Единицей измерения в си является. Единица массы системы си - килограмм

💖 Нравится? Поделись с друзьями ссылкой

Согласно определению, утвержденному XI Генеральной конференцией по мерам и весам, принявшей систему СИ, в качестве основной механической единицы принята единица массы - килограмм. Определение килограмму дано следующее:

Единицей массы - килограммом - является масса вещества, равная массе прототипа килограмма.

Прототип килограмма представляет собой находящийся в Международном бюро по мерам и весам в Севре под Парижем цилиндр из сплава 90% платины и 10% иридия диаметром около 39 мм и такой же высоты. Выбор этого сплава обеспечивает высокие качества при хранении: химическую стойкость, однородность. Сплав легко полируется и хорошо очищается. Ввиду большой плотности, составляющей 21,5 г/см 3 он обладает тем недостатком, что отделение от него уже малых частей приводит к большому изменению массы. По этой причине копии с эталонов массы (вторичные эталоны различных рангов), как правило, изготавливают из стали или из латуни.

Для обеспечения единства измерений массы в ходе установления и утверждения прототипа килограмма было изготовлено много его экземпляров. Масса прототипов обеспечивалось с отличием на уровне 10 -8 по относительной погрешности. Прототипы были проаттестованы в Международном бюро по мерам и весам. Каждому экземпляру была приписана погрешность. Возможные колебания массы прототипов не превышали 25 мкг, что соответствует относительной погрешности 2,5 ×10 -8 . В Россию как в страну-участницу Метрической конвенции в 1889 г. был направлен прототип № 12, который хранится до настоящего времени во Всероссийском научно-исследовательском институте им. Д.И. Менделеева (бывшая Главная палата мер и весов России) в Санкт-Петербурге.

Первоначально прототип массы должен был совпадать с массой одного кубического дециметра воды при ее наибольшей плотности при температуре Т = 3,98°С и давлении 101325 Па. Однако, затем максимальная плотности воды была найдена равной 0, 999 972 г/см 3 , т. е. прототип массы оказался на 28 мкг больше, чем был задуман. Это сказалось бы на определении единицы объема, если бы таковая вводилась бы какобъем одного миллилитра воды. При известной массе прототипа килограмма единицу объема можно определить как объем 1000 г воды при наибольшей плотности и нормальном давлении. Определенная таким образом единица соотносилась бы с производной единицей объема системы СИ как

Международная система единиц СИ не является установленной для всех на все времена. Уже указывалось, что многие страны пользуются другой системой мер. Методы физических измерений также постоянно совершенствуются. Именно по этой причине переопределен целый ряд величин, например, метр, кандела. Ампер. Почти для всех основных единиц системы СИ приняты новые определения, основанные на физических явлениях, отличающихся постоянством и неподверженностью влиянию внешних воздействий. Это дает возможность создать так называемые «естественные» или «нетленные» эталоны. Такие эталоны созданы для основных единиц: длины - метра, времени - секунды, силы тока - Ампера, термодинамической температуры - Кельвина, силы света - канделы. Поиски такого же эталона для единицы массы - килограмма - еще не завершились успехом. Точность, достигаемая с помощью имеющегося эталона килограмма, очень высока и пока удовлетворяет все запросы практики. Тем не менее с выходом человека в Космос, с освоением Мирового океана и т. д. для многих нужд в технике измерений желательно иметь естественный эталон массы. Поиски возможности замены искусственного эталона массы обозначена сейчас метрологами как одна их наиболее актуальных научных и практических проблем.



Одним из путей решения такой задачи является возможность объединения проблем создания и хранения эталонов единицы количества вещества и единицы массы - моля и килограмма. Для этого необходимо создать точное средство измерения количества вещества с диапазоном изменения величины на 23 - 25 порядков, что соответствует как детектированию отдельных частиц, так и макроскопическим измерениям количества вещества, которое могло бы быть принято в качестве эталона инерционной или тяготеющей массы.

С 1963 г. в СССР (ГОСТ 9867-61 «Международная система единиц») с целью унификации единиц измерения во всех областях науки и техники рекомендована для практического использования международная (интернациональная) система единиц (СИ, SI) - это система единиц измерения физических величин, принятая XI Генеральной конференцией по мерам и весам в 1960 г. В основу ее положены 6 основных единиц (длина, масса, время, сила электрического тока, термодинамическая температура и сила света), а также 2 дополнительные единицы (плоский угол, телесный угол); все остальные единицы, приводимые в таблице, являются их производными. Принятие единой для всех стран международной системы единиц призвано устранить трудности, связанные с переводами численных значений физических величин, а также различных констант из какой-либо одной, действующей в настоящее время системы (СГС, МКГСС, МКС А и т. д.), в другую.

Наименование величины Единицы измерения; значения в системе СИ Обозначения
русское международное
I. Длина, масса, объем, давление, температура
Метр - мера длины, численно равная длине международного эталона метра; 1 м=100 см (1·10 2 см)=1000 мм (1·10 3 мм)
м m
Сантиметр = 0,01 м (1·10 -2 м)=10 мм см cm
Миллиметр = 0,001 м(1·10 -3 м) = 0,1 см=1000 мк (1·10 3 мк) мм mm
Микрон (микрометр) = 0,001 мм (1·10 -3 мм) =
0, 0001 см (1·10 -4 см)= 10 000
мк μ
Ангстрем=одной десятимиллиардной метра (1·10 -10 м) или одной стомиллионной сантиметра (1·10 -8 см) Å Å
Масса Килограмм - основная единица массы в метрической системе мер и системе СИ, численно равная массе международного эталона килограмма; 1 кг=1000 г
кг kg
Грамм=0,001 кг (1·10 -3 кг)
г g
Тонна= 1000 кг (1·10 3 кг) т t
Центнер=100 кг (1·10 2 кг)
ц
Карат - внесистемная единица массы, численно равная 0,2 г ct
Гамма=одной миллионной грамма (1·10 -6 г) γ
Объем Литр=1,000028 дм 3 = 1,000028·10 -3 м 3 л l
Давление Физическая, или нормальная, атмосфера - давление, уравновешиваемое ртутным столбом высотой 760 мм при температуре 0°= 1,033 ат= = 1,01·10 -5 н/м 2 =1,01325 бар= 760 тор= 1, 033 кгс/см 2
атм atm
Техническая атмосфера - давление, равное 1 кгс/смг = 9,81·10 4 н/м 2 =0,980655 бар =0,980655·10 6 дин/см 2 = 0, 968 атм= 735 тор ат at
Миллиметр ртутного столба= 133,32 н/м 2 мм рт. ст. mm Hg
Тор - наименование внесистемной единицы измерения давления, равное 1 мм рт. ст.; дано в честь итальянского ученого Э. Торричелли тор
Бар - единица атмосферного давления = 1·10 5 н/м 2 = 1·10 6 дин/см 2 бар bar
Давление (звука) Бар-единица звукового давления (в акустике): бар - 1 дин/см 2 ; в настоящее время в качестве единицы звукового давления рекомендована единица со значением 1 н/м 2 = 10 дин/см 2
бар bar
Децибел - логарифмическая единица измерения уровня избыточного звукового давления, равная 1/10 единицы измерения избыточного давления- бела дБ db
Температура Градус Цельсия; температура в °К (шкала Кельвина), равна температуре в °С (шкала Цельсия) + 273,15 °С °С °С
II. Сила, мощность, энергия, работа, количество теплоты, вязкость
Сила Дина - единица силы в системе СГС(см-г-cек.), при которой телу с массой в 1 г сообщается ускорение, равное 1 см/сек 2 ; 1 дин- 1·10 -5 н дин dyn
Килограмм-сила- сила, сообщающая телу с массой 1 кг ускорение, равное 9,81 м/сек 2 ; 1кг=9,81 н=9,81·10 5 дин кГ, кгс
Мощность Лошадиная сила =735,5 Вт л. с. HP
Энергия Электрон-вольт - энергия, которую приобретает электрон при перемещении в электрическом поле в вакууме между точками с разностью потенциалов в 1 в; 1 эв= 1,6·10 -19 дж. Допускается применение кратных единиц: килоэлектрон-вольт (Кзв)=10 3 эв и мегаэлектрон-вольт (Мэв)= 10 6 эв. В современных энергию частиц измеряют в Бэв - миллиардах (биллионах) эв; 1 Бзв=10 9 эв
эв eV
Эрг=1·10 -7 дж; эрг также используется как единица измерения работы, численно равная работе, совершаемой силой в 1 дин на пути в 1 см эрг erg
Работа Килограмм-сила-метр (килограммометр) - единица работы, численно равная работе, совершаемой постоянной силой в 1 кГ при перемещении точки приложения этой силы на расстояние в 1 м по ее направлению; 1кГм=9,81 дж (одновременно кГм является мерой энергии) кГм, кгс·м kGm
Количество теплоты Калория - внесистемная единица измерения количества теплоты, равного количеству теплоты, необходимого для нагревания 1 г воды от 19,5 °С до 20,5 ° С. 1 кал=4,187 дж; распространена кратная единица килокалория (ккал, kcal), равная 1000 кал кал cal
Вязкость (динамическая) Пуаз - единица вязкости в системе единиц СГС; вязкость, при которой в слоистом потоке с градиентом скорости, равным 1 сек -1 на 1 см 2 поверхности слоя, действует сила вязкости в 1 дин; 1 пз = 0,1 н·сек/м 2 пз P
Вязкость (кинематическая) Стокс - единица кинематической вязкости в системе СГС; равна величине вязкости жидкости, имеющей плотность 1 г/см 3 , оказывающей сопротивление силой в 1 дин взаимному перемещению двух слоев жидкости площадью 1 см 2 , находящихся на расстоянии 1 см друг от друга и перемещающихся друг относительно друга со скоростью 1 см в сек ст St
III. Магнитный поток, магнитная индукция, напряженность магнитного поля, индуктивность, электрическая емкость
Магнитный поток Максвелл - единица измерения магнитного потока в системе СГС; 1 мкс равен магнитному потоку, проходящему через площадку в 1 см 2 , расположенную перпендикулярно к линиям индукции магнитного поля, при индукции, равной 1 гс; 1 мкс= 10 -8 вб (вебера) - единицы магнитного тока в системе СИ мкс Mx
Магнитная индукция Гаусс - единица измерения в системе СГС; 1 гс есть индукция такого поля, в котором прямолинейный проводник длиной 1 см, расположенный перпендикулярно вектору поля, испытывает силу в 1 дин, если по этому проводнику протекает ток в 3·10 10 единиц СГС; 1 гс=1·10 -4 тл (тесла) гс Gs
Напряженность магнитного поля Эрстед - единица напряженности магнитного поля в системе CГC; за один эрстед (1 э) принята напряженность в такой точке поля, в которой на 1 электромагнитную единицу количества магнетизма действует сила в 1 дину (дин);
1 э=1/4π·10 3 а/м
э Oe
Индуктивность Сантиметр - единица индуктивности в системе СГС; 1 см= 1·10 -9 гн (генри) см cm
Электрическая емкость Сантиметр - единица емкости в системе СГС = 1·10 -12 ф (фарады) см cm
IV. Сила света, световой поток, яркость, освещенность
Сила света Свеча - единица силы света, Значение которой принимается таким, чтобы яркость полного излучателя при температуре затвердевания платины была равна 60 св на 1 см 2 св cd
Световой поток Люмен - единица светового потока; 1 люмен (лм) излучается в пределах телесного угла в 1 стер точечным источником света, обладающим во всех направлениях силой света в 1 св лм lm
Люмен-секунда - соответствует световой энергии, образуемой световым потоком в 1 лм, излучаемым или воспринимаемым за 1 сек лм·сек lm·sec
Люмен-час равен 3600 люмен-секундам лм·ч lm·h
Яркость Стильб- единица яркости в системе СГС; соответствует яркости плоской поверхности, 1 см 2 которой дает в направлении, перпендикулярном к этой поверхности, силу света, равную 1 се; 1 сб=1·10 4 нт (нит) (единица яркости в системе СИ) сб sb
Ламберт - внесистемная единица яркости, производная от стильба; 1 ламберт=1/π ст= 3193 нт
Апостильб= 1/π св/м 2
Освещенность Фот - единица освещенности в системе СГСЛ (см-г-сек-лм); 1 фот соответствует освещенности поверхности в 1 см 2 равномерно распределенным световым потоком в 1 лм; 1 ф=1·10 4 лк (люкс) ф ph
V. Интенсивность радиоактивного излучения и дозы
Интенсивность Кюри - основная единица измерения интенсивности радиоактивного излучения, кюри соответствующая 3,7·10 10 распадам в 1 сек. любого радиоактивного изотопа
кюри C или Cu
милликюри= 10 -3 кюри, или 3,7·10 7 актов радиоактивного распада в 1 сек. мкюри mc или mCu
микрокюри= 10 -6 кюри мккюри μ C или μ Cu
Доза Рентген - количество (доза) рентгеновых или γ -лучей, которое в 0,001293 г воздуха (т. е. в 1 см 3 сухого воздуха при t° 0° и 760 мм рт. ст.) вызывает образование ионов, несущих одну электростатическую единицу количества электричества каждого знака; 1 р вызывает образование 2,08·10 9 пар ионов в 1 см 3 воздуха р r
миллирентген = 10 -3 p мр mr
микрорентген = 10 -6 p мкр μr
Рад - единица поглощенной дозы любого ионизирующего излучения равна рад 100 эрг на 1 г облучаемой среды; при ионизации воздуха рентгеновыми или γ-лучами 1 р равен 0,88 рад, а при ионизации тканей практически 1 р равен 1 рад рад rad
Бэр (биологический эквивалент рентгена) - количество (доза) любого вида ионизирующих излучений, вызывающее такой же биологический эффект, как и 1 р (или 1 рад) жестких рентгеновых лучей. Неодинаковый биологический эффект при равной ионизации разными видами излучений привел к необходимости введения еще одного понятия: относительной биологической эффективности излучений -ОБЭ; зависимость между дозами (Д) и безразмерным коэффициентом (ОБЭ) выражается как Д бэр =Д рад ·ОБЭ, где ОБЭ=1 для рентгеновых, γ-лучей и β -лучей и ОБЭ=10 для протонов до 10 Мэв, быстрых нейтронов и α-ча стиц естественных (по рекомендации Международного конгресса радиологов в Копенгагене, 1953) бэр, рэб rem

Примечание. Кратные и дольные единицы измерения, за исключением единиц времени и угла, образуются путем их умножения на соответствующую степень числа 10, а их названия присоединяются к наименованиям единиц измерения. Не допускается применение двух приставок к наименованию единицы. Например, нельзя писать миллимикроватт (ммквт) или микромикрофарада (ммф), а необходимо писать нановатт (нвт) или пикофарада (пф). Не следует применять приставок к наименованиям таких единиц, которые обозначают кратную или дольную единицу измерения (например, микрон). Для выражения продолжительности процессов и обозначения календарных дат событий допускается применение кратных единиц времени.

Важнейшие единицы международной системы единиц (СИ)

Основные единицы
(длина, масса, температура, время, сила электрического тока, сила света)

Наименование величины Обозначения
русское международное
Длина Метр - длина, равная 1650763,73 длин волн излучения в вакууме, соответствующая переходу между уровнями 2р 10 и 5d 5 криптона 86 *
м m
Масса Килограмм - масса, соответствующая массе международного эталона килограмма кг kg
Время Секунда - 1/31556925,9747 часть тропического года (1900) ** сек S, s
Сила электрического тока Ампер - сила неизменяющегося тока, который, проходя по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызвал бы между этими проводниками силу, равную 2·10 -7 н на каждый метр длины а A
Сила света Свеча - единица силы света, значение которой принимается таким, чтобы яркость полного (абсолютно черного) излучателя при температуре затвердевания платины была равна 60 се на 1 см 2 *** св cd
Температура (термодинамическая) Градус Кельвина (шкала Кельвина) - единица измерения температуры по термодинамической температурной шкале, в которой для температуры тройной точки воды**** установлено значение 273,16° К °К °K
* Т. е. метр равен указанному числу волн излучения с длиной волны 0,6057 мк, полученного от специальной лампы и соответствующего оранжевой линии спектра нейтрального газа криптона. Такое определение единицы длины позволяет воспроизводить метр с наибольшей точностью, а главное, в любой лаборатории, имеющей соответствующее оборудование. При этом отпадает необходимость в периодической проверке стандартного метра с его международным эталоном, хранящимся в Париже.
** Т. е. секунда равна указанной части интервала времени между двумя последовательными прохождениями Землей на орбите вокруг Солнца точки, соответствующей весеннему равноденствию. Это дает большую точность в определении секунды, чем определение ее как части суток, поскольку длительность суток меняется.
*** Т. е. за единицу принята сила света определенного эталонного источника, испускающего свет при температуре плавления платины. Прежний международный эталон свечи составляет 1,005 нового эталона свечи. Таким образом, в пределах обычной практической точности их значения можно считать совпадающими.
**** Тройная точка - температура таяния льда при наличии над ним насыщенного водяного пара.

Дополнительные и производные единицы

Наименование величины Единицы измерения; их определение Обозначения
русское международное
I. Плоский угол, телесный угол, сила, работа, энергия, количество теплоты, мощность
Плоский угол Радиан - угол между двумя радиусами круга, вырезающий на окружности рад дугу, длина которой равна радиусу рад rad
Телесный угол Стерадиан - телесный угол, вершина которого расположена в центре сферы стер и который вырезает на поверхности сферы площадь, равную площади квадрата со стороной, равной радиусу сферы стер sr
Сила Ньютон- сила, под действием которой тело с массой в 1 кг приобретает ускорение, равное 1 м/сек 2 н N
Работа, энергия, количество теплоты Джоуль - работа, которую совершает действующая на тело постоянная сила в 1 н на пути в 1 м, пройденном телом в направлении действия силы дж J
Мощность Ватт - мощность, при которой за 1 сек. совершается работа в 1 дж Вт W
II. Количество электричества, электрическое напряжение, электрическое сопротивление, электрическая емкость
Количество электричества, электрический заряд Кулон - количество электричества, протекающее через поперечное сечение проводника в течение 1 сек. при силе постоянного тока в 1 а к C
Электрическое напряжение, разность электрических потенциалов, электродвижущая сила (ЭДС) Вольт - напряжение на участке электрической цепи, при прохождении через который количества электричества в 1 к совершается работа в 1 дж в V
Электрическое сопротивление Ом - сопротивление проводника, по которому при постоянном напряжении на концах в 1 в проходит постоянный ток в 1 а ом Ω
Электрическая емкость Фарада- емкость конденсатора, напряжение между обкладками которого меняется на 1 в при зарядке его количеством электричества в 1 к ф F
III. Магнитная индукция, поток магнитной индукции, индуктивность, частота
Магнитная индукция Тесла- индукция однородного магнитного поля, которое на участок прямолинейного проводника длиной в 1 м, помещенного перпендикулярно направлению поля, действует с силой в 1 н при прохождении по проводнику постоянного тока в 1 а тл T
Поток магнитной индукции Вебер - магнитный поток, создаваемый однородным полем с магнитной индукцией в 1 тл через площадку в 1 м 2 , перпендикулярную направлению вектора магнитной индукции вб Wb
Индуктивность Генри - индуктивность проводника (катушки), в котором индуктируется ЭДС в 1 в при изменении тока в нем на 1 а за 1 сек. гн H
Частота Герц - частота периодического процесса, у которого за 1 сек. совершается одно колебание (цикл, период) Гц Hz
IV. Световой поток, световая энергия, яркость, освещенность
Световой поток Люмен - световой поток, который дает внутри телесного угла в 1 стер точечный источник света в 1 св, излучающий одинаково во всех направлениях лм lm
Световая энергия Люмен-секунда лм·сек lm·s
Яркость Нит - ярность светящейся плоскости, каждый квадратный метр которой дает в направлении, перпендикулярном плоскости, силу света в 1 св нт nt
Освещенность Люкс - освещенность, создаваемая световым потоком в 1 лм при равномерном его распределении на площади в 1 м 2 лк lx
Количество освещения Люкс-секунда лк·сек lx·s

Седьмая основная единица системы СИ - единица количества вещества моль - занимает совершенно особое место в числе основных единиц. Причин для этого существует несколько. Первая причина - эта величина практически дублирует имеющуюся основную единицу, единицу массы. Масса, определяемая как мера инертности тела или мера сил тяготения является мерой количества вещества. Вторая причина, обусловленная первой и тесно связанная с ней, состоит в том, что до сих пор не существует реализации эталона единицы этой физической величины. Многочисленные попытки независимого воспроизведения моля приводили к тому, что накопление точно измеренного количества вещества сводилось в конце концов с выходом на другие эталоны основных физических величин. Например, попытки электролитического выделения какого-либо вещества приводили к необходимости измерения массы и силы электрического тока. Точное измерение числа атомов в кристаллах приводило к измерению линейных размеров кристалла и его массы. Во всех других аналогичных попытках независимого воспроизведения моля метрологи наталкивались на те же трудности.

Естественно возникает вопрос: а по какой причине метрологические службы самых развитых стран согласились с тем, чтобы в числе основных единиц были две различные, характеризующие одно и то же физическое понятие? Ответ на этот вопрос очевиден, если отталкиваться от основного принципа построения систем единиц физических величин - удобства практического использования. В самом деле, для описания параметров механических процессов удобнее всего пользоваться произвольной искусственной мерой массы - килограммом. Для описания химических процессов очень важно знать число элементарных частиц, атомов или молекул, принимающих участие в химических реакциях. По этой причине моль называют химической основной единицей системы СИ, подчеркивая этим тот факт, что она вводится не для описания каких-то новых явлений, а для обслуживания специфических измерений, связанных с химическим взаимодействием веществ и материалов.

Указанная специфика породила еще одно очень важное качество единицы количества вещества - моля. Оно состоит в том, что при введении химического определения единицы регламентируется не просто количество любого вещества, а количества вещества в виде атомов или молекул данного сорта. Поэтому моль можно называть единицей количества индивидуального вещества. При таком определении моль становится более универсальной единицей количества вещества, чем килограмм. В самом деле, индивидуальные вещества обладают свойствами инерции и тяготения, так что эталон моля при условии его реализации на необходимом уровне точности может использоваться как эталон массы. Обратное же невозможно, т. к. мера массы, изготовленная, например, из сплава платины и иридия, никогда не сможет быть носителем свойств, присущих, например, кремнию или углероду.

Кроме удобства использования единицы количества вещества в проведении химических реакций введение второй основной единицы количества вещества оправдано еще одним обстоятельством. Оно состоит в том, что измерения количества вещества необходимо проводить в очень широком диапазоне изменения этой величины. В макроскопических явлениях объекты измерений в виде твердых тел содержат порядка 10 23 атомов. Это порядок величины числа атомов в грамм-эквиваленте вещества. В микроскопических явлениях существует даже проблема детектирования отдельных атомов. Следовательно, количество вещества необходимо измерять в диапазоне изменения более чем 20 порядков! Естественно, что ни одно устройство, ни один прибор на эталонном уровне такой возможности не обеспечит.

По этой причине очевидным становится желание метрологов иметь в качестве основных единицдве единицы количества вещества, одна из которых позволяет проводить точные измерения в области больших количеств, а вторая позволяет измерять частицы определенного вещества поштучно.

Нежелание метрологов отказаться от какой-либо основной единицы количества вещества, например от килограмма, связано с тем, что воспроизведение этой единицы изготовлением копии прототипа возможно с очень высокой точностью. Воспроизведение массы независимыми способами, такими как отбор одного литра воды или электролитическое осаждение определенной массы металла из раствора, оказывается значительно менее точным, чем изготовление копии килограмма взвешиванием.

В связи с перечисленными трудностями реализации основной единицы количества вещества в виде эталона не существует. Определение моля гласит:

Молем является количество вещества, имеющее столько структурных единиц, сколько их содержится в 12 граммах моно изотопа углерода C 12 .

Из определения с очевидностью следует, что точно это значение не установлено, По физическому смыслу оно равно постоянной Авогадро - числу атомов в грамм-эквиваленте углерода. Это дает возможность определять моль как величину, обратную постоянной Авогадро. Для 12 грамм углерода с массовым числом 12 количество атомов будет равно N A .

В соответствии с этим проблема создания эталона количества вещества сводится к уточнению постоянной Авогадро. Технически в настоящее время пользуются следующей процедурой:

    Изготавливается определенное количество (сотни грамм) сверхчистого кремния.

    На точных масс-спектрометрах измеряется изотопный состав этого кремния.

    Выращивается монокристалл сверхчистого кремния.

    Измеряется объем монокристалла по измерениям его массы и плотности V.

    На рентгеновском интерферометре измеряется размер элементарной ячейки куба в монокристалле кремния - а.

    Поскольку кристаллическая решетка в кремнии имеет форму куба, число структурных единиц в монокристалле оказывается равным

    По измерениям массы и эквивалентного атомного веса определяется число молей кремния в кристалле

где m - масса кристалла, ц. - атомный вес образца с учетом различного процентного содержания изотопов.

    Определяется постоянная Авогадро как число структурных единиц в одном грамм-эквиваленте кремния

Работы по уточнению постоянной Авогадро ведутся международными метрологическими центрами постоянно. Особенно большую активность проявляет национальная физическая лаборатория Германии РТВ в Брауншвейге. Идет постоянная борьба за чистоту исходного материала (кремния) как за счет очистки от примесей, так и за счет однородности изотопного состава. Достигнутый в настоящее время уровень содержания примесей составляет для большинства элементов не более одной частицы на миллион частиц кремния, а по некоторым примесям, мешающим кристаллообразованию, одна частица на миллиард частиц кремния.

При повторении работ по уточнению постоянной Авогадро усовершенствуются средства измерения массы кристалла, его плотности, изотопного состава, размеров кристаллической решетки. В настоящее время можно гарантировать достоверность определения постоянной Авогадро на уровне 10 -6 -10 -7 по относительной погрешности. Тем не менее это значение много больше погрешности в изготовлении копий эталона килограмма методом взвешивания.

Кроме точности, уступающей точности воспроизведения килограмма, описанная процедура определения моля страдает еще рядом существенных недостатков. Самый главный из них - это невозможность создания меры, равной какой-либо части моля или нескольких молей, т. е. создания мер кратных и дольных единиц. Любые попытки сделать это приводят к необходимости взвешивания, т. е. определения массы и выхода на эталон килограмма. Естественно, что смысл воспроизведения моля при этом теряется. Еще один принципиальный порок в процедуре использования моля это то, что проведенные измерения числа частиц на кремнии очень трудно, а иногда невозможно сопоставить с какими-либо другими частицами, и в первую очередь с углеродом, по которому собственно и определяется моль. В общем случае любая сверхточная процедура определения числа частиц какого-либо вещества может оказаться совершенно непригодной для другого вещества. Массу любых веществ мы можем сравнивать друг с другом, но число частиц одного вещества может оказаться несопоставимым с числом частиц другого вещества. В идеальном случае для обеспечения единства измерений состава веществ и материалов следует иметь универсальный метод воспроизведения моля любого вещества, но чаще всего такая задача оказывается невыполнимой. Очень большое число веществ в химические взаимодействия друг с другом не вступают.

Несмотря на все указанные проблемы в реализации эталона моля «химическая метрология» существует, и химикам очень удобно использовать единицу количества вещества, определенную как число частиц данного сорта. Именно поэтому моль широко используется в измерениях состава веществ и материалов и в особенности в измерениях экологической направленности. В настоящее время проблемы экологии как межнациональные и межгосударственные являются одной из основных точек приложения достижений метрологии как науки об обеспечении единства измерений.

Как определяли метр

В 17 веке, с развитием в Европе науки, начали все чаще звучать призывы к тому, чтобы ввести универсальную меру или католический метр. Это была бы десятичная мера, основанная на естественном явлении, и не зависящая от постановлений находящегося у власти человека. Такая мера заменила бы собой множество разнообразных систем мер, существовавших тогда.

Британский философ Джон Уилкинс предлагал принять за единицу длины длину маятника, полупериод которого был бы равен одной секунде. Однако в зависимости от места измерений значение получалось неодинаковым. Французский астроном Жан Рише установил этот факт во время путешествия в Южную Америку (1671 - 1673).

В 1790 году министр Талейран предложил измерить эталонную длину расположив маятник на строго установленной широте между Бордо и Греноблем - 45° северной широты. В результате, 8 мая 1790 года, на Французском Национальном собрании постановили, что метр - это длина маятника с полупериодом колебаний на широте 45°, равным 1 с. В соответствии с сегодняшней СИ, тот метр был бы равен 0,994 м. Это определение, однако, не устроило научную общественность.

30 марта 1791 года Французская академия наук приняла предложение задать эталонный метр как часть Парижского меридиана. Новая единица должна была быть одной десятимиллионной частью расстояния от экватора до Северного полюса, то есть одной десятимилионной долей четверти окружности Земли, измеренной вдоль Парижского меридиана. Это и стало называться «Метр подлинный и окончательный».

7 апреля 1795 Национальный Конвент принял закон о введении метрической системы во Франции и поручил комиссарам, в число которых входили Ш. О. Кулон, Ж. Л. Лагранж, П.-С. Лаплас и другие учёные, экспериментально определить единицы длины и массы.

В период с 1792 по 1797 год, по решению революционного Конвента, французские учёные Деламбр (1749-1822 гг.) и Мешен (1744-1804 гг.) за 6 лет измерили таки дугу парижского меридиана длиной в 9°40" от Дюнкерка до Барселоны, проложив цепь из 115 треугольников через всю Францию и часть Испании.

Впоследствии, однако, выяснилось, что из-за неправильного учёта полюсного сжатия Земли эталон оказался короче на 0,2 мм. Таким образом, длина меридиана в 40000 км лишь приблизительна. Первый прототип эталона метра из латуни, тем не менее, был в 1795 году изготовлен. Следует отметить, что единица массы (килограмм, определение которого было основано на массе одного кубического дециметра воды), тоже была привязана к определению метра.

История становления системы СИ

22 июня 1799 года во Франции были изготовлены два эталона из платины - эталонный метр и эталонный килограмм. Эту дату можно справедливо считать днем начала развития нынешней системы СИ.

В 1832 году Гаусс создает так называемую абсолютную систему единиц, приняв за основные три единицы: единицу времени - секунду, единицу длины - миллиметр, и единицу массы - грамм, ведь с использованием именно этих единиц ученому удалось измерить абсолютное значение магнитного поля Земли (эта система получила название СГС Гаусса).

В 1860-х под влиянием Максвелла и Томсона было сформулировано требование, согласно которому базовые и производные единицы необходимо согласовть между собой. В итоге система СГС была введена в 1874 году, при этом были выделены и приставки для обозначения дольных и кратных единиц от микро до мега.

В 1875 году представителями 17 государств, среди которых Россия, США, Франция, Германия, Италия, - была подписана Метрическая конвенция, согласно которой были учреждены Международное бюро мер, Международный комитет мер и начинал действовать регулярный созыв Генеральной конференции по мерам и весам (ГКМВ). Тогда же было положено начало работам по разработке международных эталона килограмма и эталона метра.

В 1889 году на первой конференции ГКМВ была принята система МКС, основанная на метре, килограмме и секунде, сходная с СГС, однако единицы МКС виделись более приемлемыми в силу удобства из практического использования. Позже будут введены единицы для оптики и электричества.

В 1948 году, по предписанию французского правительства и Международного союза теоретической и прикладной физики, девятая Генеральная конференция по мерам и весам выступила с поручением Международному комитету по мерам и весам предложить, с целью унификации системы единиц измерения, свои идеи по созданию единой системы единиц измерения, которая смогла бы быть принятой всеми государствами участниками Метрической конвенции.

В результате, в 1954 году на десятой ГКМВ были предложены и приняты следующие шесть единиц: метр, килограмм, секунда, ампер, градус Кельвина и кандела. В 1956 году система получила название «Système International d’Unitйs» - международная система единиц. В 1960 году был принят стандарт, который впервые назвали «Международная система единиц», и назначили сокращение «SI». Основными единицами остались те же шесть единиц: метр, килограмм, секунда, ампер, градус Кельвина и кандела. (Русскоязычное сокращение «СИ» можно расшифровать как «Система интернациональная»).

В 1963 году в СССР, по ГОСТу 9867-61 «Международная система единиц», СИ была принята в качестве предпочтительной для областей народного хозяйства, в науке и технике, а также для преподавания в учебных заведениях.

В 1968 году на тринадцатой ГКМВ единица «градус Кельвина» была заменена на «кельвин», также было принято обозначение «К». Кроме того было принято новое определение секунды: секунда - это интервал времени, равный 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного квантового состояния атома цезия-133. В 1997 году будет принято уточнение, согласно которому этот интервал времени относится к атому цезия-133 в покое при 0 К.

В 1971 году на 14 ГКМВ добавили еще одну основную единицу «моль» - единицу количества вещества. Моль есть количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг. При применении моля структурные элементы должны быть специфицированы и могут быть атомами, молекулами, ионами, электронами и другими частицами или специфицированными группами частиц.

В 1979 году на 16 ГКМВ приняли новое определение для канделы. Кандела - сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540·1012 Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср (ватт на стерадиан).

В 1983 году на 17 ГКМВ было дано новое определение метра. Метр - это длина пути, проходимого светом в вакууме за (1 / 299 792 458) секунды.

В 2009 году Правительством РФ было утверждено «Положение о единицах величин, допускаемых к применению в Российской Федерации», а в 2015 году в него были внесены изменения, призванные исключить «срок действия» некоторых внесистемных единиц.

Назначение системы СИ и ее роль в физике

На сегодняшний день международная система физических величин СИ принята по всему миру, и используется больше чем другие системы как в науке и технике, так и в обыденной жизни людей, - она является современным вариантом метрической системы.

Большинство стран используют в технике именно единицы системы СИ, даже если в повседневной жизни пользуются традиционными для этих территорий единицами. В США, например, привычные единицы определяются через единицы системы СИ при помощи фиксированных коэффициентов.

Величина Обозначение
русское наименование русское международное
Плоский угол радиан рад rad
Телесный угол стерадиан ср sr
Температура Цельсия градус Цельсия о С о С
Частота герц Гц Hz
Сила ньютон Н N
Энергия джоуль Дж J
Мощность ватт Вт W
Давление паскаль Па Pa
Световой поток люмен лм lm
Освещенность люкс лк lx
Электрический заряд кулон Кл C
Разность потенциалов вольт В V
Сопротивление ом Ом Ω
Электроемкость фарад Ф F
Магнитный поток вебер Вб Wb
Магнитная индукция тесла Тл T
Индуктивность генри Гн H
Электрическая проводимость сименс См S
Активность радиоактивного источника беккерель Бк Bq
Поглощенная доза ионизирующего излучения грей Гр Gy
Эффективная доза ионизирующего излучения зиверт Зв Sv
Активность катализатора катал кат kat

Исчерпывающее подробное описание системы СИ в официальном виде изложено в издаваемой с 1970 года «Брошюре СИ» и в дополнении к ней; эти документы опубликованы на официальном сайте Международного бюро мер и весов. Начиная с 1985 года данные документы выпускаются на английском и французском языках, и всегда переводятся на ряд языков мира, хотя официальный язык документа - французский.

Точное официальное определение системы СИ формулируется следующим образом: «Международная система единиц (СИ) - система единиц, основанная на Международной системе величин, вместе с наименованиями и обозначениями, а также набором приставок и их наименованиями и обозначениями вместе с правилами их применения, принятая Генеральной конференцией по мерам и весам (CGPM)».

Система СИ определяют семь основных единиц физических величин и их производные, а также приставки к ним. Регламентированы стандартные сокращения обозначений единиц и правила записи производных. Основных единиц, как и прежде, семь: килограмм, метр, секунда, ампер, кельвин, моль, кандела. Основные единицы отличаются независимыми размерностями, и не могут быть получены из других единиц.

Что касается производных единиц, то они могут быть получены на базе основных, путем проведения математических действий, таких как деление или умножение. Часть производных единиц, такие как «радиан», «люмен», «кулон», - имеют собственные названия.

Перед названием единицы можно использовать приставку, как например миллиметр - тысячная доля метра, а километр - тысяча метров. Приставка означает, что единицу необходимо разделить или умножить на целое число, являющееся конкретной степенью числа десять.

    Моль определен как количество ве-щества в системе, которое содержит столько структурных элементов, сколько атомов содержится в углероде12 массой 0,012 кг. При исполь-зовании единицы моль структурные элементы должны быть специфициро-ваны и могут быть атомами, моле-кулами, ионами, электронами, другими частицами или группами таких частиц. Моль более важен в изучении химии, нежели физики, но мы с ним встретим-ся при изучении электролиза. Другие пять единиц актив-но используются в физике, так же как и многие производные единицы, полу-чаемые из комбинаций этих пяти ос-новных.

    В системе СИ основной единицей измерения длины или расстояния яв-ляется метр. Он определяется как «длина, равная 1 650 763,73 длин волн в вакууме излучения, соответствую-щего переходу между уровнями 2р 10 и 5d 5 атома криптона-86». Это озна-чает, что расстояние, называемое одним метром, может быть «легко» вос-произведено учеными всего мира с весьма большой точностью. Для рабо-ты с этой книгой, как правило, будет достаточно использования метровой линейки, штангенциркуля или микро-метра в зависимости от измеряемой длины и необходимой точности из-мерения.

    Основной единицей СИ массы яв-ляется килограмм. Он определяется как масса, равная массе международ-ного эталонного килограмма. (Этот эталон находится в распоряжении Международного бюро мер и весов в Севре близ Парижа, Франция.) Эта основная единица является единствен-ной, определение которой не связано с параметрами каких-либо физических явлений. Поэтому каждая страна должна иметь копию международного . Точность оп-ределения килограмма может дос-тигаться при помощи имеющихся в распоряжении весов.

    Основной единицей СИ времени яв-ляется секунда. Она определяется как «длительность 9 192 631 770 периодов излучения, соответствующего пере-ходу между двумя сверхтонкими уров-нями основного состояния атома це-зия- 133». В этом случае также нам не нужна эта степень точности, на уровне изучения нашей книги можно обойтись секундомером или электрон-ным таймером.

    Приставки для единиц СИ

    Для обозначения десятичных крат-ных и дольных единиц измерения мо-гут использоваться приставки, приведенные в таблице 2.2. Приставку сле-дует применять таким образом, чтобы цифровая часть величины находилась между 0,1 и 1000. Исключением из правил являются приставки, относя-щиеся к килограмму, так как они до-бавляются к слову «грамм» (1 . 10 -3 кг). Однако без дополнительных пояснений ясно, как должны выражаться деся-тичные дольные и кратные единицы килограмма.

    Другие применяемые единицы

    Возможными для использования в соответствующем контексте признают-ся и другие единицы, которые не вхо-дят в систему СИ. Они даны в таб-лице 2.3.

    В 1964 г. Международное бюро мер и весов приняло «литр» как возмож-ное обозначение кубического децимет-ра, но рекомендует не применять эту единицу для выражения результатов высокой точности. При использовании таких единиц, как литры и милли-литры, вместо кубических дециметров и кубических сантиметров при прове-дении вычислений могут быть утра-чены преимущества упорядоченности системы СИ, поскольку теряется связь с основной единицей измерения.

Рассказать друзьям