Из чего состоит микроскоп. Устройство микроскопа и его назначение

💖 Нравится? Поделись с друзьями ссылкой
  • Электрическая часть микроскопа
  • В отличие от лупы, микроскоп имеет, как минимум, две ступени увеличения. Функциональные и конструктивно-технологические части микроскопа предназначены для обеспечения работы микроскопа и получения устойчивого, максимально точного, увеличенного изображения объекта. Здесь мы рассмотрим устройство микроскопа и постараемся описать основные части микроскопа.

    Функционально устройство микроскопа делится на 3 части:

    1. Осветительная часть

    Осветительная часть конструкции микроскопа включает источник света (лампа и электрический блок питания) и оптико-механическую систему (коллектор, конденсор, полевая и апертурная регулируемые/ирисовые диафрагмы).

    2. Воспроизводящая часть

    Предназначена для воспроизведения объекта в плоскости изображения с требуемым для исследования качеством изображения и увеличения (т. е. для построения такого изображения, которое как можно точнее и во всех деталях воспроизводило бы объект с соответствующим оптике микроскопа разрешением, увеличением, контрастом и цветопередачей).
    Воспроизводящая часть обеспечивает первую ступень увеличения и расположена после объекта до плоскости изображения микроскопа.
    Воспроизводящая часть включает объектив и промежуточную оптическую систему.

    Современные микроскопы последнего поколения базируются на оптических системах объективов, скорректированных на бесконечность. Это требует дополнительно применения так называемых тубусных систем, которые параллельные пучки света, выходящие из объектива, «собирают» в плоскости изображения микроскопа.

    3. Визуализирующая часть

    Предназначена для получения реального изображения объекта на сетчатке глаза, фотоплёнке или пластинке, на экране телевизионного или компьютерного монитора с дополнительным увеличением (вторая ступень увеличения).
    Визуализирующая часть расположена между плоскостью изображения объектива и глазами наблюдателя (цифровой камерой).
    Визуализирующая часть включает монокулярную, бинокулярную или тринокулярную визуальную насадку с наблюдательной системной (окулярами, которые работают как лупа).
    Кроме того, к этой части относятся системы дополнительного увеличения (системы оптовара/смены увеличения); проекционные насадки, в том числе дискуссионные для двух и более наблюдателей; рисовальные аппараты; системы анализа и документирования изображения с соответствующими адаптерами для цифровых камер.

    Схема расположения основных элементов оптического микроскопа

    С конструктивно-технологической точки зрения, микроскоп состоит из следующих частей:

    • механической;
    • оптической;
    • электрической.

    1. Механическая часть микроскопа

    Устройство микроскопа включается в себя штатив, который является основным конструктивно-механическим блоком микроскопа. Штатив включает в себя следующие основные блоки: основание и тубусодержатель .

    Основание представляет собой блок, на котором крепится весь микроскоп и является одной из основных частей микроскопа. В простых микроскопах на основание устанавливают осветительные зеркала или накладные осветители. В более сложных моделях осветительная система встроена в основание без или с блоком питания.

    Разновидности оснований микроскопа:

    1. основание с осветительным зеркалом;
    2. так называемое «критическое» или упрощенное освещение;
    3. освещение по Келеру.
    1. узел смены объективов, имеющий следующие варианты исполнения — револьверное устройство, резьбовое устройство для ввинчивания объектива, «салазки» для безрезьбового крепления объективов с помощью специальных направляющих;
    2. фокусировочный механизм грубой и точной настройки микроскопа на резкость — механизм фокусировочного перемещения объективов или столиков;
    3. узел крепления сменных предметных столиков;
    4. узел крепления фокусировочного и центрировочного перемещения конденсора;
    5. узел крепления сменных насадок (визуальных, фотографических, телевизионных, различных передающих устройств).

    В микроскопах могут использоваться стойки для крепления узлов (например, фокусировочный механизм в стереомикроскопах или крепление осветителя в некоторых моделях инвертированных микроскопов).

    Чисто механическим узлом микроскопа является предметный столик , предназначенный для крепления или фиксации в определенном положении объекта наблюдения. Столики бывают неподвижные, координатные и вращающиеся (центрируемые и нецентрируемые).

    2. Оптика микроскопа (оптическая часть)

    Оптические узлы и принадлежности обеспечивают основную функцию микроскопа — создание увеличенного изображения объекта с достаточной степенью достоверности по форме, соотношению размеров составляющих элементов и цвету. Кроме этого, оптика должна обеспечивать такое качество изображения, которое отвечает целям исследования и требованиям методик проводимого анализа.
    Основными оптическими элементами микроскопа являются оптические элементы, образующие осветительную (в том числе, конденсор), наблюдательную (окуляры) и воспроизводящую (в том числе объективы) системы микроскопа.

    Объективы микроскопа

    — представляют собой оптические системы, предназначенные для построения микроскопического изображения в плоскости изображения с соответствующим увеличением, разрешением элементов, точностью воспроизведения по форме и цвету объекта исследования. Объективы являются одними из основных частей микроскопа. Они имеют сложную оптико-механическую конструкцию, которая включает несколько одиночных линз и компонентов, склеенных из 2-х или 3-х линз.
    Количество линз обусловлено кругом решаемых объективом задач. Чем выше качество изображения, которое дает объектив, тем сложнее его оптическая схема. Общее число линз в сложном объективе может доходить до 14 (например, это может относиться к планапохроматическому объективу с увеличением 100х и числовой апертурой 1,40).

    Объектив состоит из фронтальной и последующей частей. Фронтальная линза (или система линз) обращена к препарату и является основной при построении изображения соответствующего качества, определяет рабочее расстояние и числовую апертуру объектива. Последующая часть в сочетании с фронтальной обеспечивает требуемое увеличение, фокусное расстояние и качество изображения, а также определяет высоту объектива и длину тубуса микроскопа.

    Классификация объективов

    Классификация объективов значительно сложнее классификации микроскопов. Объективы разделяются по принципу расчетного качества изображения, параметрическим и конструктивно-технологическим признакам, а также по методам исследования и контрастирования.

    По принципу расчетного качества изображения объективы могут быть:

    • ахроматическими;
    • апохроматическими;
    • объективами плоского поля (план).

    Ахроматические объективы .

    Ахроматические объективы рассчитаны для применения в спектральном диапазоне 486-656 нм. Исправление любой аберрации (ахроматизация) выполнено для двух длин волн. В этих объективах устранены сферическая аберрация, хроматическая аберрация положения, кома, астигматизм и частично — сферохроматическая аберрация. Изображение объекта имеет несколько синевато-красноватый оттенок.

    Апохроматические объективы .

    Апохроматические объективы имеют расширенную спектральную область, и ахроматизация выполняется для трех длин волн. При этом, кроме хроматизма положения, сферической аберрации, комы и астигматизма, достаточно хорошо исправляются также вторичный спектр и сферохроматическая аберрация, благодаря введению в схему линз из кристаллов и специальных стекол. По сравнению с ахроматами, эти объективы обычно имеют повышенные числовые апертуры, дают четкое изображение и точно передают цвет объекта.

    Полуапохроматы или микрофлюары .

    Современные объективы, обладающие промежуточным качеством изображения.

    Планобъективы .

    В планобъективах исправлена кривизна изображения по полю, что обеспечивает резкое изображение объекта по всему полю наблюдения. Планобъективы обычно применяются при фотографировании, причем наиболее эффективно применение планапохроматов.

    Потребность в подобного типа объективах возрастает, однако они достаточно дороги из-за оптической схемы, реализующей плоское поле изображения, и применяемых оптических сред. Поэтому рутинные и рабочие микроскопы комплектуются так называемыми экономичными объективами. К ним относятся объективы с улучшенным качеством изображения по полю: ахростигматы (LEICA), СР-ахроматы и ахропланы (CARL ZEISS), стигмахроматы (ЛОМО).

    По параметрическим признакам объективы делятся следующим образом:

    1. объективы с конечной длиной тубуса (например, 160 мм) и объективы, скорректированные на длину тубуса «бесконечность» (например, с дополнительной тубусной системой, имеющей фокусное расстояние микроскопа 160 мм);
    2. объективы малых (до 10х); средних (до 50х) и больших (более 50х) увеличений, а также объективы со сверхбольшим увеличением (свыше 100х);
    3. объективы малых (до 0,25), средних (до 0,65) и больших (более 0,65) числовых апертур, а также объективы с увеличенными (по сравнению с обычными) числовыми апертурами (например, объективы апохроматической коррекции, а также специальные объективы для люминесцентных микроскопов);
    4. объективы с увеличенными (по сравнению с обычными) рабочими расстояниями, а также с большими и сверхбольшими рабочими расстояниями (объективы для работы в инвертированных микроскопах). Рабочее расстояние — это свободное расстояние между объектом (плоскостью покровного стекла) и нижним краем оправы (линзы, если она выступает) фронтального компонента объектива;
    5. объективы, обеспечивающие наблюдение в пределах нормального линейного поля (до 18 мм); широкопольные объективы (до 22,5 мм); сверхширокопольные объективы (более 22,5 мм);
    6. объективы стандартные (45 мм, 33 мм) и нестандартные по высоте.

    Высота — расстояние от опорной плоскости объектива (плоскости соприкосновения ввинченного объектива с револьверным устройством) до плоскости предмета при сфокусированном микроскопе, является постоянной величиной и обеспечивает парфокальность комплекта аналогичных по высоте объективов разного увеличения, установленных в револьверном устройстве. Иными словами, если с помощью объектива одного увеличения получить резкое изображение объекта, то при переходе к последующим увеличениям изображение объекта остается резким в пределах глубины резкости объектива.

    По конструктивно-технологическим признакам существует следующее разделение:

    1. объективы, имеющие пружинящую оправу (начиная с числовой апертуры 0,50), и без нее;
    2. объективы, имеющие ирисовую диафрагму внутри для изменения числовой апертуры (например, в объективах с увеличенной числовой апертурой, в объективах проходящего света для реализации метода темного поля, в поляризационных объективах отраженного света);
    3. объективы с корректирующей (управляющей) оправой, которая обеспечивает движение оптических элементов внутри объектива (например, для корректировки качества изображения объектива при работе с различной толщиной покровного стекла или с различными иммерсионными жидкостями; а также для изменения увеличения при плавной — панкратической — смене увеличения) и без нее.

    По обеспечению методов исследования и контрастирования объективы можно разделить следующим образом:

    1. объективы, работающие с покровным и без покровного стекла;
    2. объективы проходящего и отраженного света (безрефлексные); люминесцентные объективы (с минимумом собственной люминесценции); поляризационные объективы (без натяжения стекла в оптических элементах, т. е. не вносящие собственную деполяризацию); фазовые объективы (имеющие фазовый элемент — полупрозрачное кольцо внутри объектива); объективы ДИК (DIC), работающие по методу дифференциально-интерференционного контраста (поляризационные с призменным элементом); эпиобъективы (объективы отраженного света, предназначенные для обеспечения методов светлого и темного поля, имеют в конструкции специально рассчитанные осветительные эпи-зеркала);
    3. иммерсионные и безыммерсионные объективы.

    Иммерсия (от лат. immersio — погружение ) — жидкость, заполняющая пространство между объектом наблюдения и специальным иммерсионным объективом (конденсором и предметным стеклом). В основном применяются три типа иммерсионных жидкостей: масляная иммерсия (МИ/Oil), водная иммерсия (ВИ/W) и глицериновая иммерсия (ГИ/Glyc), причем последняя в основном применяется в ультрафиолетовой микроскопии.
    Иммерсия применяется в тех случаях, когда требуется повысить разрешающую способность микроскопа или её применения требует технологический процесс микроскопирования. При этом происходит:

    1. повышение видимости за счет увеличения разности показателя преломления среды и объекта;
    2. увеличение глубины просматриваемого слоя, который зависит от показателя преломления среды.

    Кроме того, иммерсионная жидкость может уменьшать количество рассеянного света за счет исчезновения бликов от объекта. При этом устраняются неизбежные потери света при его попадании в объектив.

    Иммерсионные объективы. Качество изображения, параметры и оптическая конструкция иммерсионных объективов рассчитываются и выбираются с учетом толщины слоя иммерсии, которая рассматривается как дополнительная линза с соответствующим показателем преломления. Иммерсионная жидкость, расположенная между объектом и фронтальным компонентом объектива, увеличивает угол, под которым рассматривается объект (апертурный угол). Числовая апертура безыммерсионного (сухого) объектива не превышает 1,0 (разрешающая способность порядка 0,3 мкм для основной длины волны); иммерсионного — доходит до 1,40 в зависимости от показателя преломления иммерсии и технологических возможностей изготовления фронтальной линзы (разрешающая способность такого объектива порядка 0,12 мкм).
    Иммерсионные объективы больших увеличений имеют короткое фокусное расстояние — 1,5-2,5 мм при свободном рабочем расстоянии 0,1-0,3 мм (расстояние от плоскости препарата до оправы фронтальной линзы объектива).

    Маркировка объективов.

    Данные о каждом объективе маркируются на его корпусе с указанием следующих параметров:

    1. увеличение («х»-крат, раз): 8х, 40х, 90х;
    2. числовая апертура: 0,20; 0,65, пример: 40/0,65 или 40х/0,65;
    3. дополнительная буквенная маркировка, если объектив используется при различных методах исследования и контрастирования: фазовый — Ф (Рп2 — цифра соответствует маркировке на специальном конденсоре или вкладыше), поляризационный — П (Pol), люминесцентный — Л (L), фазово-люминесцентный — ФЛ (PhL), ЭПИ (Epi, HD) — эпиобъектив для работы в отраженном свете по методу темного поля, дифференциально-интерференционный контраст — ДИК (DIC), пример: 40х/0,65 Ф или Ph2 40x/0,65;
    4. маркировка типа оптической коррекции: апохромат — АПО (АРО), планахромат — ПЛАН (PL, Plan), планапохромат — ПЛАН-АПО (Plan-Аро), улучшенный ахромат, полуплан — СХ — стигмахромат (Achrostigmat, CP-achromat, Achroplan), микрофлюар (полуплан-полуапохромат) — СФ или М-ФЛЮАР (MICROFLUAR, NEOFLUAR, NPL, FLUOTAR).

    Окуляры

    Оптические системы, предназначенные для построения микроскопического изображения на сетчатке глаза наблюдателя. В общем виде окуляры состоят из двух групп линз: глазной — ближайшей к глазу наблюдателя — и полевой — ближайшей к плоскости, в которой объектив строит изображение рассматриваемого объекта.

    Окуляры классифицируются по тем же группам признаков, что и объективы:

    1. окуляры компенсационного (К — компенсируют хроматическую разность увеличения объективов свыше 0,8%) и безкомпенсационного действия;
    2. окуляры обычные и плоского поля;
    3. окуляры широкоугольные (с окулярным числом — произведение увеличения окуляра на его линейное поле — более 180); сверхширокоугольные (с окулярным числом более 225);
    4. окуляры с вынесенным зрачком для работы в очках и без;
    5. окуляры для наблюдения, проекционные, фотоокуляры, гамалы;
    6. окуляры с внутренней наводкой (с помощью подвижного элемента внутри окуляра происходит настройка на резкое изображение сетки или плоскость изображения микроскопа; а также плавное, панкратическое изменение увеличения окуляра) и без нее.

    Осветительная система

    Осветительная система является важной частью конструкции микроскопа и представляет собой систему линз, диафрагм и зеркал (последние применяются при необходимости), обеспечивающую равномерное освещение объекта и полное заполнение апертуры объектива.
    Осветительная система микроскопа проходящего света состоит из двух частей — коллектора и конденсора.

    Коллектор.
    При встроенной осветительной системе проходящего света коллекторная часть расположена вблизи источника света в основании микроскопа и предназначена для увеличения размера светящегося тела. Для обеспечения настройки коллектор может быть выполнен подвижным и перемещаться вдоль оптической оси. Вблизи коллектора располагается полевая диафрагма микроскопа.

    Конденсор.
    Оптическая система конденсора предназначена для увеличения количества света, поступающего в микроскоп. Конденсор располагается между объектом (предметным столиком) и осветителем (источником света).
    Чаще всего в учебных и простых микроскопах конденсор может быть выполнен несъемным и неподвижным. В остальных случаях конденсор является съемной частью и при настройке освещения имеет фокусировочное перемещение вдоль оптической оси и центрировочное перемещение, перпендикулярное оптической оси.
    При конденсоре всегда находится осветительная апертурная ирисовая диафрагма.

    Конденсор является одним из основных элементов, обеспечивающих работу микроскопа по различным методам освещения и контрастирования:

    • косое освещение (диафрагмирование от края к центру и смещение осветительной апертурной диафрагмы относительно оптической оси микроскопа);
    • темное поле (максимальное диафрагмирование от центра к краю осветительной апертуры);
    • фазовый контраст (кольцевое освещение объекта, при этом изображение светового кольца вписывается в фазовое кольцо объектива).

    Классификация конденсоров близка по группам признаков к объективам:

    1. конденсоры по качеству изображения и типу оптической коррекции делятся на неахроматические, ахроматические, апланатические и ахроматические-апланатические;
    2. конденсоры малой числовой апертуры (до 0,30), средней числовой апертуры (до 0,75), большой числовой апертуры (свыше 0,75);
    3. конденсоры с обычным, большим и сверхбольшим рабочим расстоянием;
    4. обычные и специальные конденсоры для различных методов исследования и контрастирования;
    5. конструкция конденсора — единая, с откидным элементом (фронтальным компонентом или линзой большого поля), со свинчивающимся фронтальным элементом.

    Конденсор Аббе — не исправленный по качеству изображения конденсор, состоящий из 2-х неахроматических линз: одной — двояковыпуклой, другой — плосковыпуклой, обращенной к объекту наблюдения (плоская сторона этой линзы направлена вверх). Апертура конденсора, А= 1,20. Имеет ирисовую диафрагму.

    Апланатический конденсор — конденсор, состоящий из трех линз, расположенных следующим образом: верхняя линза — плосковыпуклая (плоская сторона направлена к объективу), далее следуют вогнуто-выпуклая и двояковыпуклая линзы. Исправлен в отношении сферической аберрации и комы. Апертура конденсора, А = 1.40. Имеет ирисовую диафрагму.

    Ахроматический конденсор — конденсор, полностью исправленный в отношении хроматической и сферической аберрации.

    Конденсор темного поля — конденсор, предназначенный для получения эффекта темного поля. Может быть специальным или переделан из обычного светлопольного конденсора путем установки в плоскости ирисовой диафрагмы конденсора непрозрачного диска определенного размера.

    Маркировка конденсора.
    На фронтальной части конденсора наносится маркировка числовой апертуры (осветительной).

    3. Электрическая часть микроскопа

    В современных микроскопах, вместо зеркал, используются различные источники освещения, питаемые от электрической сети. Это могут быть как обычные лампы накаливания, так и галогенные, и ксеноновые, и ртутные лампы. Также все большую популярность набирают светодиодные осветители. Они обладают значительными преимуществами перед обычными лампами, как например долговечность, меньшее энергопотребление и др. Для питания источника освещения используются различные блоки питания, блоки розжига и другие устройства, преобразующие ток из электрической сети в подходящий для питания того или иного источника освещения. Также это могут быть и аккумуляторные батареи, что позволяет использовать микроскопы в полевых условиях при отсутствии точки подключения.

    Прочитайте:
    1. C) Локализуются в эпителиальной выстилке ворсинок и крипт, клетки имеют чаще всего треугольную форму, в базальной части содержится аргирофильная зернистость.
    2. E. Атриовентрикулярная экстрасистола, очаг возбуждения в средней части узла.
    3. II.Укажите основные синдромологические и классификационные критерии сформулированного Вами диагноза.
    4. III. Основные принципы патогенетической терапии вирусных гепатитов
    5. III. Паллиативные операции (кускование с удалением части «опухоли»

    К практическому занятию по разделу «Биология клетки»

    Для студентов 1 курса специальности «Медико-профилактическое дело»

    ТЕМА. Микроскоп и правила работы с ним

    ЦЕЛЬ. На основании знания устройства светового микроскопа, освоить технику микроскопирования и приготовления временных микропрепаратов.

    ПЕРЧЕНЬ ЗНАНИЙ И ПРАКТИЧЕСКИХ НАВЫКОВ

    1. Знать основные части микроскопа, их назначение и устройство.

    2. Знать правила подготовки микроскопа к работе.

    3. Уметь работать с микроскопом при малом и большом увеличении.

    4. Уметь готовить временные микропрепараты.

    5. Уметь правильно вести протокол практической работы.

    ОСНОВНЫЕ ВОПРОСЫ ТЕМЫ

    1. Основные виды микроскопии.

    2. Основные части светового микроскопа их назначение и устройство.

    3. Элементы механической части микроскопа.

    4. Осветительная часть микроскопа. Каким образом можно увеличить интенсивность освещенности объекта?

    5. Оптическая часть микроскопа. Как определить увеличение объекта?

    6. Правила подготовки микроскопа к работе.

    7. Правила работы с микроскопом.

    8. Техника приготовления временного микропрепарата.

    КРАТКОЕ СОДЕРЖАНИЕ ТЕМЫ

    Микроскоп используется для изучения мелких объектов. В практической работе обычно пользуются микроскопом МБР-1 (микроскоп биологический рабочий), или МБИ-1 (микроскоп биологический исследовательский), «Биолам» и МБС-1 (стереоскопический микроскоп).

    ВИДЫ МИКРОСКОПИИ: световая (лупа, люминесцентный, обычные световый микроскопы – МБИ–1, МБР-1, «Биолам» и др.) и электронная (просвечивающий и сканирующий микроскоп).

    СВЕТОВАЯ МИКРОСКОПИЯ – основной метод изучения биологических объектов, поэтому освоение техникой микроскопирования, приготовления временных микропрепаратов необходимо для практической работы врача. Разрешающая способность светового микроскопа ограничена длиной световых волн. Современные световые микроскопы дают увеличение до 1500. Очень важно, что в световом микроскопе можно изучать не только фиксированные, но и живые объекты. Поскольку структуры большинства живых клеток недостаточно контрастны (они прозрачны), разработаны специальные методы световой микроскопии, позволяющие повысить контрастность изображения объекта. К таким методам относятся фазово-контрастная микроскопия, микроскопия в темном поле и др.

    ЭЛЕКТРОННАЯ МИКРОСКОПИЯ – использует не свет, а поток электронов, проходящий через электромагнитные поля. Длина волны электронов зависит от напряжения, подаваемого для генерации электронного пучка, практически можно получить разрешение приблизительно в 0,5 нм, т.е. примерно в 500 раз больше, чем в световом микроскопе. Электронный микроскоп позволил не только изучить строение ранее известных клеточных структур, но и выявить новые органеллы. Так, было обнаружено, что основу строения многих клеточных органоидов составляет элементарная клеточная мембрана.

    Основные части микроскопа: механическая, оптическая и осветительная.

    Механическая часть. К механической части относятся штатив, предметный столик, тубус, револьвер, макро- и микрометрические винты. Штатив состоит из основания, придающего микроскопу устойчивость. От середины основания вверх отходит тубусодержатель, к нему прикреплен тубус, расположенный наклонно. На штативе укреплен предметный столик. На него помещают микропрепарат. На предметном столике имеются два зажима (клеммы) для фиксации препарата. Через отверстие в предметном столике обеспечивается освещение объекта.

    На боковых поверхностях штатива имеются два винта, с помощью которых можно передвинуть тубус. Макрометрический винт служит для грубой настройки на фокус (на четкое изображение объекта при малом увеличении микроскопа). Микрометрический винт используется для тонкой настройки на фокус.

    Оптическая часть. Оптическая часть микроскопа представлена окулярами и объективами. Окуляр (лат. осиllus – глаз) находится вверхней части тубуса и обращен к глазу. Окуляр представляет собой систему линз. Окуляры могут давать различное увеличение: в 7 (×7), 10 (×10), 15 (×15) раз. На противоположной стороне тубуса находится вращающийся диск – револьверная пластинка. В ее гнездах закреплены объективы. Каждый объектив представлен несколькими линзами, так же как окуляр, позволяет получить определенное увеличение: ×8, ×40, ×90.

    СТРОЕНИЕ МИКРОСКОПА И ПРАВИЛА РАБОТЫ С НИМ

    Микроскопический метод (гр. micros - мельчайший, scoрeo - смотрю) позволяет изучать структуру клетки с помощью микроскопов (светового, фазово-контрастного, люминесцентного, ультрафиолетового, электронного). При световой микроскопии объект рассматривается в лучах видимого света. Для этого используются микроскопы типа МБР, МБИ, МБС-1, Р-14, МИКМЕД - 1 и др.

    Микроскоп состоит из механической, осветительной и оптической частей.

    К механической части микроскопа относятся: подставка штатива (башмак), колонка штатива (тубусодержатель), тубус, предметный столик с клеммами или фиксаторами препарата, сортировочные винты (винты перемещения предметного столика и препарата), револьвер, макро- и микрометрические винты, винт конденсора, рычаг ирис-диафрагмы, оправа для светофильтров. Сортировочные винты применяются для центровки объекта на препарате. Револьвер состоит из двух сегментов шара, соединенных друг с другом центральным винтом. Верхний сегмент шара крепиться к тубусу. В нижнем сегменте имеются отверстия для вкручивания объективов. Макро- и микрометрические винты обеспечивают грубую и микрометрическую фокусировку (изменяют расстояние между объективом и изучаемым объектом).

    Осветительная часть состоит из подвижного зеркала, ирисдиафрагмы, конденсора и светофильтров (матового и синего). Зеркало служит для улавливания света и направления его на препарат (объект). Зеркало имеет две поверхности - плоскую и вогнутую. Плоская поверхность зеркала используется при ярком освещении, вогнутая - при слабом. Диафрагма состоит из системы металлических пластин, которые за счет движения рычага могут сходиться к центру или расходиться. Диафрагма находится под конденсором и служит для изменения ширины светового пучка. Конденсор (система линз) концентрирует рассеянные лучи света в тонкий пучок параллельных лучей и направляет их на объект. Он передвигается специальным винтом вверх - вниз, что позволяет установить оптимальное освещение препарата. Обычное положение конденсора самое верхнее. Светофильтры устраняют дифракцию света. Они располагаются в специальной откидной оправе, находящейся под ирис-диафрагмой. Матовый светофильтр используется при рассеянном освещении, синей – при ярком свете.

    Увеличительные приборы: микроскоп МБР–1 и микроскоп Р-14.

    Механическая часть: 1 - подставка штатива (основание); 2 - колонка штатива (тубусодержатель); 3 - тубус; 4 - револьвер; 5 - предметный столик; 6 - сортировочные винты; 7 - макрометрический винт; 8 - микрометрический винт; 9 - винт конденсора;10 - рычаг ирис-диафрагмы, 11 - оправа для светофильтров.

    Осветительная часть : 12 – зеркало; 13 - диафрагма; 14 – конденсор.

    Оптическая часть: 15 - окуляр; 16 - объективы.

    Оптическая часть состоит из объективов (система линз, обращенная к объекту), которые расположены в гнездах револьвера, и окуляров (система линз, обращенная к глазу исследователя). Окуляры вставляются в верхнее отверстие тубуса. Обычно, микроскопы комплектуются тремя объективами (8х - объектив малого увеличения, 40х - объектив большого увеличения, 90х - иммерсионный объектив). В соответствии с этим на объективе имеется маркировка 8, 40 или 90. На окулярах также имеется маркировка, указывающая кратность их увеличения. Чаще всего используют окуляры с увеличением 7, 10 и 15 раз.

    Общее увеличение микроскопа (величина, показывающая во сколько раз линейные размеры изображения больше линейных размеров объекта) равно произведению увеличений окуляра и объектива. Например, при работе с окуляром 10х и объективом 8х происходит увеличение линейных размеров объекта в 80 раз (8 х 10 = 80).

    Важнейшей характеристикой светового микроскопа является разрешающая способность. Разрешающая способность (d) - минимальное расстояние между двумя точками объекта, которые видны раздельно. Она определяется по формуле:

    d = 0,61 _________________

    где λ - длина волны света, n - показатель преломления среды между объектом и объективом, α - угол между оптической осью объектива и наиболее отклоненным лучом, попадающим в объектив. Величина «n sin α» называется числовой апертурой объектива. У объектива «8х» она равна 0,20; у объектива «40х» - 0,65; у объектива «90х» - 1,25. Предел разрешающей способности микроскопа зависит от длины волны источника света. У светового микроскопа она равна 555 нм. Поэтому современные оптические микроскопы имеют предел полезного увеличения до 1500 раз.

    Правила работы с микроскопом на малом увеличении (объектив 8х).

    1. Перед началом работы проверить исправность микроскопа, протереть линзы окуляра, объективов, конденсора и зеркало салфеткой. Развинчивать окуляры и объективы запрещено.

    2. Микроскоп расположить на рабочем месте слева, на ширину ладони от края стола, тубусодержателем к себе и предметным столиком от себя.

    3. Поднять конденсор и поставить его на уровне предметного стола, открыть диафрагму.

    4. Движением револьвера довести до щелчка объектив малого увеличения «8х» (щелчок свидетельствует о том, что оптическая ось окуляра

    и объектива совпадают).

    5. Вращением макрометрического винта расположить объектив «8х» на 1 см от предметного столика.

    6. Осветить поле зрения: глядя в окуляр, поворачивать зеркало большим и указательным пальцами одной или обеих кистей рук по отношению к источнику света до тех пор, пока всё поле зрения не будет освещено равномерно и достаточно интенсивно. Пальцы располагать на боковой поверхности зеркала так, чтобы ими не закрывать само зеркало. Микроскоп с этого момента нельзя перемещать на рабочем месте.

    7. Взять препарат из гистологической коробки большим и указательным пальцами за боковые поверхности предметного стекла. Проверить, где лицевая сторона препарата (на лицевой стороне находится покровное стекло). Рассмотреть препарат на свет. Определить место нахождения объекта. Положить препарат на предметный столик микроскопа лицевой стороной вверх так, чтобы сам объект находился в центре отверстия предметного столика.

    8. Глядя сбоку, с помощью макрометрического винта, опустить объектив малого увеличения на расстояние 0,5 см от препарата, т. е. ниже фокусного.

    9. Глядя в окуляр, движением макрометрического винта на себя, плавно поднять тубус вверх до появления четкого изображения объекта.

    10. С помощью сортировочных винтов или плавных движений пальцев руки объект, или интересующую нас часть объекта, вывести в центр поля зрения, после чего приступить к изучению препарата и зарисовке его в альбом.

    11. По окончании изучения препарата макрометрическим винтом поднять объектив «8х» на 2 - 3 см. Препарат снять с предметного столика и положить в гистологическую коробку.

    12. По окончании работы на предметный столик положить салфетку, объектив «8х» опустить вниз на расстояние 0,5 см от предметного столика. Микроскоп накрыть чехлом и поставить на место хранения. При переносе микроскопа необходимо одной рукой держать микроскоп за штатив, а другой поддерживать зеркало снизу.

    Правила работы с микроскопом на большом увеличении (объектив 40х).

    1. При работе с микроскопом на большом увеличении сначала необходимо выполнить все пункты правил работы с объективом «8х» (см. пункты 1 - 10).

    2. После нахождения объекта на малом увеличении необходимо вывести интересующую нас часть точно в центр поля зрения с помощью сортировочных винтов (при переходе к большому увеличению диаметр фронтальной линзы объектива уменьшается в 5 раз, поэтому если не сделать центровку, объект может оказаться за пределами поля зрения).

    3. Макрометрическим винтом поднять объектив вверх на 2 - 3 см и с помощью револьвера заменить объектив «8х» на объектив «40х».

    4. Глядя сбоку, макрометрическим винтом опустить объектив «40х» так, чтобы расстояние между ним и препаратом составило 1 мм, т. е. объектив оказался ниже фокусного расстояния.

    5. Глядя в окуляр, макрометрическим винтом плавно поднять тубус вверх до появления изображения объекта.

    6. Дофокусировку провести с помощью микрометрического винта, который разрешается вращать вперед или назад не более чем на полоборота.

    7. Изучить препарат. Зарисовать.

    8. По окончании изучения препарата макрометрическим винтом объектив «40х» поднять вверх на 2-3 см. Препарат снять со столика и положить в гистологическую коробку. Поворотом револьвера заменить объектив «40х» на объектив «8х», на предметный столик положить салфетку.

    С помощью макрометрического винта опустить объектив «8х» на расстояние 0,5 см. Микроскоп закрыть чехлом и поставить на место хранения.

    Работа с иммерсионным объективом (объектив 90х).

    Объектив «90х» применяется при работе с очень мелкими и тонкими объектами. Пространство между объективом и препаратом заполняется специальным иммерсионным маслом. Масло имеет показатель преломления, приближающийся к показателю преломления стекла, поэтому световые лучи попадают в объектив, не преломляясь и не изменяя направления при прохождении различных сред. Иммерсионный объектив требует осторожного обращения, так как его фронтальная линза имеет маленькое

    фокусное расстояние и при грубой работе можно повредить и объектив, и препарат.

    1. Прежде, чем приступить к работе с объективом «90х», необходимо найти объект при увеличении 56х, а затем 280х. Точно вывести интересующую часть объекта в центр поля зрения с помощью сортировочных винтов, т.к. необходимо помнить обратную зависимость между силой увеличения и диаметром фронтальной линзы.

    2. Макрометрическим винтом поднять объектив «40х» вверх на 2 –3 см. На исследуемый участок препарата нанести стеклянной палочкой каплю иммерсионного масла. Капля не должна быть очень большой или очень малой. С помощью револьвера заменить объектив «40х» на объектив «90х».

    3. Глядя сбоку, макрометрическим винтом опустить объектив «90х» в каплю масла почти до соприкосновения с покровным стеклом, т. е. ниже фокусного расстояния.

    4. Глядя в окуляр, макрометрическим винтом плавно поднять объектив «90х» вверх до появления изображения.

    5. Пользуясь микрометрическим винтом, добиться четкого изображения объекта; приступить к его изучению и зарисовке в альбом (при необходимости).

    6. После окончания изучения препарата макрометрическим винтом поднять объектив «90х» вверх на 2-3 см над столиком. Препарат снять, стереть масло полоской фильтровальной бумаги и протереть салфеткой. Препарат положить в гистологическую коробку. Линзу объектива «90х» также протереть полоской фильтровальной бумаги, а затем салфеткой. В случае сильного загрязнения, когда масло засыхает, объектив рекомендуется протереть салфеткой, смоченной бензином.

    7. С помощью револьвера заменить объектив «90х» на объектив «8х». На предметный столик положить салфетку. Макрометрическим винтом объектив «8х» опустить вниз на расстояние 0,5 см от предметного столика. Микроскоп закрыть чехлом и поставить на место постоянного хранения.

    Подготовила: доцент Логишинец И.А.

    Литература:

    1. Бекиш О.-Я.Л., Никулин Ю.Т. Практикум по биологии (для студентов 1-го курса фармацевтического факультета).- Витебск, 1997.- 90с.

    2. http://wikipedia.ru

    РАСТИТЕЛЬНАЯ КЛЕТКА

    Клетка - функциональная и структурная единица живого организма.

    Устройство микроскопа

    Микроскоп служит для увеличения и рассматривания мелких предметов, не видимых простым глазом. Он необходим при изучении анатомического строения растений (рис.1). В микроскопе можно выделить три части:

    1.Оптическая (объектив, окуляр, диафрагма, конденсор).

    2.Механическая (тубус, тубусодержатель, предметный столик, револьвер, макро- и микрометрические винты, подставка).

    3.Осветительная (зеркало).

    Рис.1. Строение микроскопа

    Объектив наиболее важная часть микроскопа, представляет собой систему линз, заключенных в металлическую оправу. Микроскоп снабжен несколькими объективами с разным увеличением (10X,40X,80X).

    Зеркало имеет две поверхности, одна плоская, другая вогнутая. При работе с микроскопом пользуются вогнутым зеркалом.

    Конденсор состоит из двух или трех линз в металлическом цилиндре. С помощью специального винта конденсор можно поднимать или опускать, при этом освещение будет усиливаться или ослабляться. Между зеркалом и конденсором располагается диафрагма, с помощью которой регулируется освещение и резкость изображения.

    Макрометрический винт нужен для грубой наводки (фокусировки) изображения.

    Микрометрический винт необходим для перемещения тубуса на малые расстояния.

    Предметный столик служит для расположения на нем микропрепарата. На столике имеются два зажима для закрепления препарата.

    Правила работы с микроскопом

    1.Микроскоп следует брать за дугообразно изогнутую часть тубусодержателя.

    2.Микроскоп ставят на стол таким образом, чтобы дугообразный тубусодержатель был обращен к себе, зеркало и предметный столик от себя.

    3.Установленный в начале работы микроскоп нельзя перемещать с места на место, так как нарушаются условия освещения.

    4.Тетрадь и все необходимые для работы предметы располагаются справа от микроскопа.

    5.Освещение микроскопа производится при малом увеличении (8X) зеркалом вогнутой стороной. Глядя сбоку на зеркало, направляем его к источнику света. Затем левым глазом (правый глаз всегда открыт) смотрим в окуляр и добиваемся максимального освещения.

    6.Готовый микропрепарат выкладываем на предметный столик, закрепляем зажимами.

    7.Глядя сбоку на объектив 8X, с помощью макрометрического винта опускаем объектив на расстояние меньше 1 см от препарата. Затем, глядя в окуляр, тем же макровинтом поворачиваем его к себе до четкого изображения (фокусное расстояние). Фокусное расстояние- это расстояние от рассматриваемого объекта до линзы объектива. При малом увеличении оно равно 1 см.

    8.Для рассматривания препарата при большом увеличении (40X) необходимо сменить объектив с помощью револьвера, поворачиваем его до щелчка. Устанавливается фокусное расстояние так же, как и при малом увеличении. Фокусное расстояние при большом увеличении равно 1 мм.

    9.После зарисовки препарата при большом увеличении поверните револьвер и установите малое увеличение. Затем снимите препарат. Макровинт опустите вниз- это не рабочее состояние микроскопа.

    10.Уберите микроскоп в шкаф, защищающий его от механических повреждений и пыли (рис.2).

    Рис.2. Работа с микроскопом

    Термин «микроскоп» имеет греческие корни. Он состоит из двух слов, которые в переводе означают «маленький» и «смотрю». Основная роль микроскопа заключается в его применении при рассмотрении весьма малых объектов. При этом данный прибор позволяет определить размеры и форму, строение и иные характеристики невидимых невооруженным глазом тел.

    История создания

    Точных сведений о том, кто являлся изобретателем микроскопа, в истории нет. По одним данным, его в 1590 г. сконструировали отец и сын Янссены, мастера по изготовлению очков. Еще один претендент на звание изобретателя микроскопа - Галилео Галилей. В 1609 г. этим ученым был представлен прибор с вогнутой и выпуклой линзами на обозрение публики в Академии деи Линчеи.

    С годами система для рассмотрения микроскопических объектов развивалась и совершенствовалась. Огромным шагом в ее истории стало изобретение простого ахроматически регулировавшегося двухлинзового устройства. Представил эту систему голландец Кристиан Гюйгенс в конце 1600-х годов. Окуляры данного изобретателя находятся в производстве и сегодня. Единственным их минусом является недостаточная широта поля обзора. Кроме того, по сравнению с устройством современных приборов окуляры Гюйгенса имеют неудобное расположение для глаз.

    Особый вклад в историю микроскопа внес изготовитель подобных приборов Антон Ван Левенгук (1632-1723 гг.). Именно он привлек внимание биологов к этому устройству. Левенгук изготавливал небольшие по размеру изделия, оснащенные одной, но весьма сильной линзой. Использовать такие приборы было неудобно, но они не удваивали дефекты изображений, что присутствовало в составных микроскопах. Исправить этот недостаток изобретатели смогли только спустя 150 лет. Вместе с развитием оптики улучшилось качество изображения в составных приборах.

    Совершенствование микроскопов продолжается и в наши дни. Так, в 2006 г. немецкими учеными, работающими в институте биофизической химии, Мариано Босси и Штефаном Хеллем, был разработан новейший оптический микроскоп. Из-за возможности наблюдать предметы с размерами в 10 нм и трехмерные высококачественные 3D-изображения прибор назвали наноскопом.

    Классификация микроскопов

    В настоящее время существует большое разнообразие приборов, предназначенных для рассмотрения малых по величине объектов. Их группирование производится исходя из различных параметров. Это может быть назначение микроскопа или принятый способ освещения, строение, использованное для оптической схемы и т. д.

    Но, как правило, основные виды микроскопов классифицируются по величине разрешения микрочастиц, которые можно увидеть при помощи данной системы. Согласно такому делению, микроскопы бывают:
    - оптическими (световыми);
    - электронными;
    - рентгеновскими;
    - сканирующими зондовыми.

    Наибольшее распространение получили микроскопы светового типа. Их богатый выбор имеется в магазинах оптики. При помощи подобных приборов решаются основные задачи по исследованию того или иного объекта. Все другие виды микроскопов относят к специализированным. Их использование производится, как правило, в условиях лаборатории.

    Каждый из вышеперечисленных видов приборов имеет свои подвиды, которые применяются в той или иной сфере. Кроме того, сегодня есть возможность купить школьный микроскоп (или учебный), который является системой начального уровня. Предлагаются потребителям и профессиональные приборы.

    Применение

    Для чего нужен микроскоп? Человеческий глаз, будучи особой оптической системой биологического типа, имеет определенный уровень разрешения. Другими словами, существует наименьшее расстояние между наблюдаемыми объектами, когда их еще можно различить. Для нормального глаза такое разрешение находится в пределах 0,176 мм. А вот размеры большинства животных и растительных клеток, микроорганизмов, кристаллов, микроструктуры сплавов, металлов и т. п. намного меньше этой величины. Каким же образом изучать и наблюдать подобные объекты? Вот здесь на помощь людям и приходят различные виды микроскопов. К примеру, приборы оптического типа позволяют различить структуры, у которых расстояние между элементами составляет минимум 0,20 мкм.

    Как устроен микроскоп?

    Прибор, с помощью которого человеческому глазу становится доступным рассмотрение микроскопических объектов, имеет два основных элемента. Ими являются объектив и окуляр. Закреплены данные части микроскопа в подвижном тубусе, располагающемся на металлическом основании. На нем же имеется и предметный столик.

    Современные виды микроскопов, как правило, оснащены осветительной системой. Это, в частности, конденсор, имеющий ирисовую диафрагму. Обязательной комплектацией увеличительных приборов являются микро- и макровинты, которые служат для настройки резкости. В конструкции микроскопов предусматривается и наличие системы, управляющей положением конденсора.

    В специализированных, более сложных микроскопах нередко используются и иные дополнительные системы и устройства.

    Объективы

    Начать описание микроскопа хотелось бы с рассказа об одной из его основных частей, то есть с объектива. Они является сложной оптической системой, увеличивающей размеры рассматриваемого предмета в плоскости изображения. Конструкция объективов включает в себя целую систему не только одиночных, но и склеенных по две или три штуки линз.

    Сложность подобной оптико-механической конструкции зависит от круга тех задач, которые должны быть решены тем или иным прибором. Например, в самом сложном микроскопе предусматривается до четырнадцати линз.

    В составе объектива находятся фронтальная часть и системы, последующие за ней. Что является основой для построения изображения нужного качества, а также определения рабочего состояния? Это фронтальная линза или их система. Последующие части объектива необходимы для обеспечения требуемого увеличения, фокусного расстояния и качества изображения. Однако осуществление таких функций возможно только в сочетании с фронтальной линзой. Стоит сказать и о том, что конструкция последующей части влияет на длину тубуса и высоту объектива прибора.

    Окуляры

    Эти части микроскопа представляют собой оптическую систему, предназначенную для построения необходимого микроскопического изображения на поверхности сетчатки глаз наблюдателя. В составе окуляров находятся две группы линз. Ближайшая к глазу исследователя называется глазной, а дальняя - полевой (с ее помощью объектив выстраивает изображение изучаемого объекта).

    Осветительная система

    В микроскопе предусмотрена сложная конструкция из диафрагм, зеркал и линз. С ее помощью обеспечивается равномерная освещенность исследуемого объекта. В самых первых микроскопах данную функцию осуществляли По мере усовершенствования оптических приборов в них стали применять сначала плоские, а затем и вогнутые зеркала.

    С помощью таких нехитрых деталей лучи от солнца или лампы направлялись на объект исследования. В современных микроскопах более совершенна. Она состоит из конденсора и коллектора.

    Предметный столик

    Микроскопические препараты, требующие изучения, располагаются на плоской поверхности. Это и есть предметный столик. Различные виды микроскопов могут иметь данную поверхность, сконструированную таким образом, что объект исследования будет поворачиваться в наблюдателя по горизонтали, по вертикали или под определенным углом.

    Принцип действия

    В первом оптическом приборе система линз давала обратное изображение микрообъектов. Это позволяло разглядеть строение вещества и мельчайшие детали, которые подлежали изучению. Принцип действия светового микроскопа сегодня схож с той работой, которую осуществляет рефракторный телескоп. В этом приборе свет преломляется в момент прохождения через стеклянную часть.

    Как же увеличивают современные световые микроскопы? После попадания в прибор пучка световых лучей происходит их преобразование в параллельный поток. Только затем идет преломление света в окуляре, благодаря чему и увеличивается изображение микроскопических объектов. Далее эта информация поступает в нужном для наблюдателя виде в его

    Подвиды световых микроскопов

    Современные классифицируют:

    1. По классу сложности на исследовательский, рабочий и школьный микроскоп.
    2. По области применения на хирургические, биологические и технические.
    3. По видам микроскопии на приборы отраженного и проходящего света, фазового контакта, люминесцентные и поляризационные.
    4. По направлению светового потока на инвертированные и прямые.

    Электронные микроскопы

    С течением времени прибор, предназначенный для рассмотрения микроскопических объектов, становился все более совершенным. Появились такие виды микроскопов, в которых был использован совершенно иной, не зависящий от преломления света принцип работы. В процессе использования новейших типов приборов задействовали электроны. Подобные системы позволяют увидеть настолько малые отдельные части вещества, что их попросту обтекают световые лучи.

    Для чего нужен микроскоп электронного типа? С его помощью изучают структуру клеток на молекулярном и субклеточном уровнях. Также подобные приборы применяют для исследования вирусов.

    Устройство электронных микроскопов

    Что лежит в основе работы новейших приборов для рассмотрения микроскопических объектов? Чем электронный микроскоп отличается от светового? Есть ли между ними какие-либо сходства?

    Принцип работы электронного микроскопа основан на тех свойствах, которыми обладают электрические и магнитные поля. Их вращательная симметрия способна оказывать фокусирующее действие на электронные пучки. Исходя из этого, можно дать ответ на вопрос: «Чем электронный микроскоп отличается от светового?» В нем, в отличие от оптического прибора, нет линз. Их роль играют соответствующим образом рассчитанные магнитные и электрические поля. Создаются они витками катушек, через которые проходит ток. При этом такие поля действуют подобно При увеличении или уменьшении силы тока происходит изменение фокусного расстояния прибора.

    Что касается принципиальной схемы, то у электронного микроскопа она аналогична схеме светового прибора. Отличие заключено лишь в том, что оптические элементы замещены подобными им электрическими.

    Увеличение объекта в электронных микроскопах происходит за счет процесса преломления пучка света, проходящего сквозь исследуемый объект. Под различными углами лучи попадают в плоскость объективной линзы, где и происходит первое увеличение образца. Далее электроны проходят путь к промежуточной линзе. В ней происходит плавное изменение увеличения размеров объекта. Конечную картинку исследуемого материала дает проекционная линза. От нее изображение попадает на флуоресцентный экран.

    Виды электронных микроскопов

    Современные виды включают в себя:

    1. ПЭМ, или просвечивающий электронный микроскоп. В этой установке изображение очень тонкого, толщиной до 0,1 мкм, объекта формируется при взаимодействии пучка электронов с исследуемым веществом и с последующим его увеличением находящимися в объективе магнитными линзами.
    2. РЭМ, или растровый электронный микроскоп. Такой прибор позволяет получить изображение поверхности объекта с большим разрешением, составляющим порядка нескольких нанометров. При использовании дополнительных методов подобный микроскоп выдает информацию, помогающую определить химический состав приповерхностных слоев.
    3. Туннельный сканирующий электронный микроскоп, или СТМ. При помощи данного прибора измеряется рельеф проводящих поверхностей, имеющих высокое пространственное разрешение. В процессе работы с СТМ острую металлическую иглу подводят к изучаемому объекту. При этом выдерживается расстояние всего в несколько ангстрем. Далее на иглу подают небольшой потенциал, благодаря чему возникает туннельный ток. При этом наблюдатель получает трехмерное изображение исследуемого объекта.

    Микроскопы «Левенгук»

    В 2002 году в Америке появилась новая компания, занимающаяся производством оптических приборов. В ассортиментном перечне ее продукции находятся микроскопы, телескопы и бинокли. Все эти приборы отличает высокое качество изображения.

    Головной офис и отдел разработок компании располагаются в США, в городе Фримонде (Калифорния). А вот что касается производственных мощностей, то они находятся в Китае. Благодаря всему этому компания поставляет на рынок передовую и качественную продукцию по приемлемой цене.

    Вам нужен микроскоп? Levenhuk предложит необходимый вариант. В ассортименте оптической техники компании находятся цифровые и биологические приборы для увеличения изучаемого объекта. Кроме того, покупателю предлагаются и дизайнерские модели, исполненные в разнообразной цветовой гамме.

    Микроскоп Levenhuk обладает обширными функциональными возможностями. Например, учебный прибор начального уровня может быть присоединен к компьютеру, а также он способен выполнять видеосъемку проводимых исследований. Таким функционалом оснащена модель Levenhuk D2L.

    Компания предлагает биологические микроскопы различного уровня. Это и более простые модели, и новинки, которые подойдут профессионалам.

    Рассказать друзьям